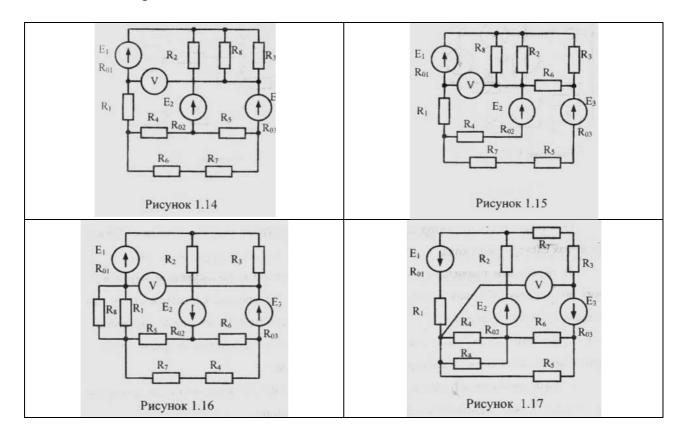

Контрольное задание 1 (Постоянный ток)


Задание 1. Дана электрическая схема соединений резисторов. Вычислить общее сопротивление данной цепи; падение напряжения на каждом из резисторов; токи, протекающие по каждому из резисторов, если известны питающее напряжение — U, величины сопротивления резисторов — R_1, R_2, R_3, R_4, R_5 . Составить баланс мощностей.

Значение	единица		Вариант								
параметра	измер.	1	2	3	4	5	6	7	8	9	10
U	В	110	127	220	380	660	400	320	140	180	250
R1	Ом	7	9	12	12	23	18	17	5	3	16
R2	Ом	14	5	24	3	4	12	9	2	1	3
R3	Ом	12	14	8	7	9	15	18	1	7	31
R4	Ом	9	10	12	5	7	11	24	18	11	27
R5	Ом	17	3	6	17	11	19	12	9	28	23

Задание 2. Для электрической цепи, схема которой изображена на рисунках 1.14-1.23, в соответствии с заданными в таблице 1.1 значениями сопротивлений и источников ЭДС выполнить:

- 1. упростить схему, заменив в тех ветках, где это необходимо, параллельное и (или) последовательное соединение сопротивлений эквивалентным. Начертить полученную схему;
- 2. составить систему уравнений, необходимых для определения токов электрической цепи по законам Кирхгофа;
- 3. используя метод контурных токов, найти токи во всех ветвях электрической цепи;
- 4. проверить правильность решения, применив метод узловых потенциалов (или двух узлов). Предварительно упростить схему, применяя треугольник сопротивлений (звезду) эквивалентной звездой (треугольником). Начертить расчетную схему с эквивалентной звездой (треугольником) сопротивлений и показать на ней токи;
- 5. определить ток I_1 , (на сопротивлении R_1) для исходной схеме, используя метод эквивалентного генератора;
- 6. определить показания вольтметра и составить баланс мощностей для заданной схемы;
- 7. построить в масштабе потенциальную диаграмму для контура, содержащего две ЭДС.

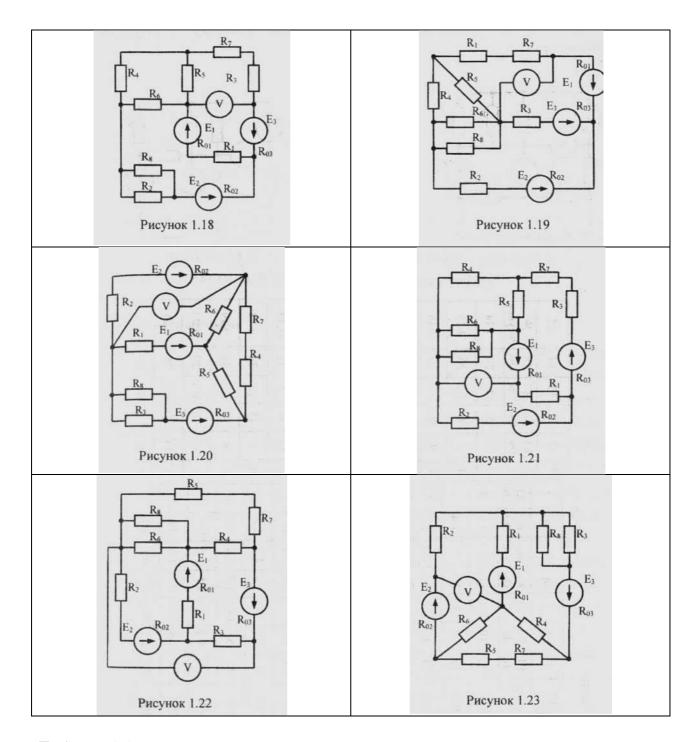


Таблица 1.1

Dominoria	E1	E2	E3	R_{01}	R_{02}	R_{03}	R1	R2	R3	R4	R5	R6	R7	R8	$N_{\underline{0}}$
Вариант	В	В	В	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Рисунок
1	32	10	11.3	1	0.9	1.5	4	5	6	15	5	5	1	20	1.14
2	12	12	15.3	1.1	1	1.4	3	6	7	20	7	4	1.2	25	1.15
3	24	15	18.3	1.2	1.1	1.3	3	8	4	14	9	8	1.3	30	1.16
4	10	14	7	1.3	1.2	1.2	2	9	3	15	11	9	2	32	1.17
5	8	12.5	9	1.4	1.3	1.1	5	7	2	10	15	15	1.4	34	1.18
6	8	16.4	13.8	1.5	1.4	1.0	6	5	8	8	6	17	1	35	1.19
7	15	20.5	14.8	0.5	1.5	0.9	8	4	12	9	13	10	0.9	29	1.20
8	20	8.8	16.8	0.6	1.6	0.8	9	11	11	11	14	7	0.7	28	1.21
9	21	6.5	19.8	0.7	0.8	0.7	4	10	10	7	8	12	0.8	40	1.22
10	6	9.5	5.5	0.8	0.7	0.6	7	12	15	6	5	14	1.0	34	1.23

Контрольное задание 2 (Переменный синусоидальный ток)

Задание 1. Для электрической цепи, схема которого изображена на рисунке 2.15, определить напряжения на элементах схемы, ток, активную, реактивную и полную мощности. Построить в масштабе векторную диаграмму напряжений. Значения параметров элементов электрической цепи приведено в таблице 2.1.

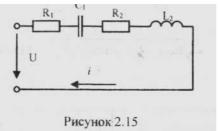


Таблица 2.1

Номер варианта	U, B	R1, Ом	R2, Ом	СІ, мкФ	L2, мГн
1	50	5	9	300	318
2	60	10	18	320	324
3	70	15	24	280	268
4	80	6	4	290	295
5	90	12	8	315	300
6	100	16	14	295	250
7	110	8	23	330	280
8	120	16	11	270	312
9	130	22	7	285	296
10	140	25	10	275	270

Задание 2. Для электрической цепи, схема которой изображена на рисунке 2.16, определить токи в каждой ветке и в неразветвлённой части цепи, активную, реактивную и полную мощности. Построить в масштабе векторную диаграмму токов. Значения параметров элементов электрической цепи приведены в таблице 2.2.

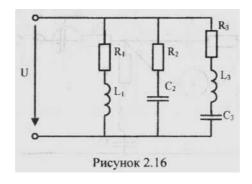
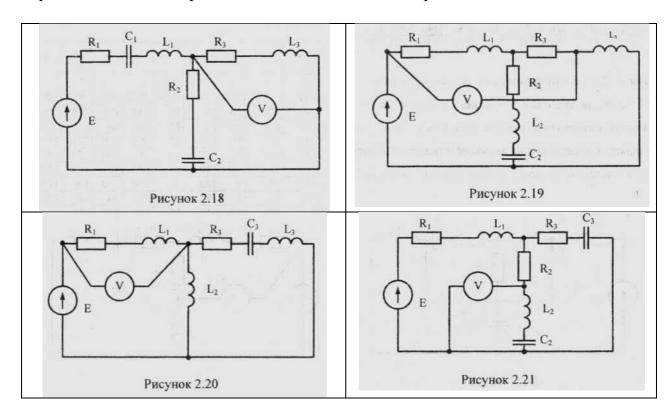



Таблица 2.2

Номер	U, B	R1,	R2,	R3,	C2,	C3,	L1,	L3,
варианта	U, D	Ом	Ом	Ом	мкФ	мкФ	мΓн	мГн
1	30	10	8	10	150	100	200	100
2	40	20	5	11	200	90	210	105
3	50	12	15	12	160	110	220	110
4	60	22	27	13	210	120	150	120
5	70	15	32	14	220	80	180	140
6	25	8	40	15	170	130	190	145
7	35	16	14	16	175	70	195	108
8	45	19	18	17	195	135	165	67
9	55	26	7	18	180	140	205	75
10	65	31	24	19	230	150	230	80

Задание 3. Для электрической цепи, схема которой изображена на рисунках 2.17 - 2.26, по заданным в таблице 2.3 параметрами элементов и источников определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов и топографическую диаграмму напряжений для контура, указанного преподавателем. Определить показания вольтметра.

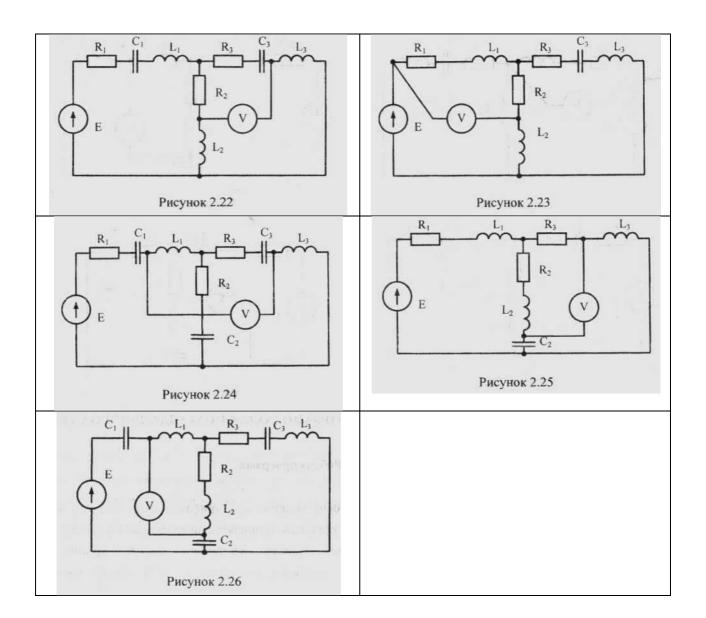


Таблица 2.3

Номер	E,	R1,	R2,	R3,	L1,	L2,	L3,	C1,	C2,	C3,	Рисунок
варианта	В	Ом	Ом	Ом	мΓн	мΓн	мГн	мкФ	мкФ	мкФ	
1	100	2	10	12	15	20	25	510	120	68	2.17
2	110	4	11	14	20	30	27	450	150	150	2.18
3	120	5	12	16	25	40	48	360	130	170	2.19
4	130	3	13	17	18	34	49	420	140	135	2.20
5	150	6	14	13	16	45	54	390	160	200	2.21
6	140	I	15	11	14	39	46	475	135	210	2.22
7	160	2.5	16	18	10	48	56	340	110	167	2.23
8	180	3.5	17	19	17	55	36	380	115	190	2.24
9	200	7	18	21	34	26	39	430	137	135	2.25
10	210	4.5	20	10	35	37	43	455	125	140	2.26

Контрольное задание 3. (Трехфазные цепи переменного тока)

Задание I. Для электрической цепи, схема которого изображена на рисунке 3.8, по заданным в таблице 3.1 параметрами элементов и линейные напряжении, определить фазные и линейные токи, ток в нейтральном проводе, активную, реактивную и полную мощности всей цепи и каждой фазы отдельно. Определить показания ваттметров. Построить векторную диаграмм токов и напряжений на комплексной плоскости.

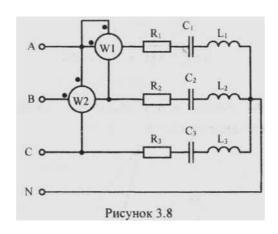


Таблица 3.1

Номер	Ил,	R1,	R2,	R3,	L1,	L2,	L3,	C1,	C2,	C3,
варианта	В	Ом	Ом	Ом	мГн	мГн	мГн	мкФ	мкФ	мкФ
1	110	10	12	13	20	17	27	300	302	304
2	120	20	24	24	25	18	28	310	312	3)6
3	200	15	18	16	35	19	29	315	317	318
4	180	10	32	24	40	20	30	290	292	297
5	380	20	16	15	45	21	31	285	287	288
6	660	15	24	20	50	22	32	320	322	324
7	440	10	23	24	24	23	33	325	327	329
8	220	20	21	27	36	24	34	280	282	286
9	400	15	15	32	42	25	35	330	334	337
10	380	30	20	16	23	26	36	275	278	274

Задание 2. В электрической цепи, схема которой изображена на рисунке 3.9, по заданным в таблице 3.2 параметрами элементов и линейном напряжении, определить фазные и линейные токи, активную, реактивную и полную мощности всей цепи и каждой фазы отдельно. Определить показания ваттметров. Построить векторную диаграмму токов и напряжений на комплексной плоскости.

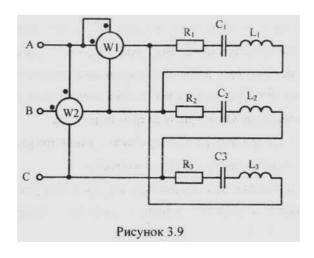


Таблица 3.2

Номер	Uл,	R1,	R2,	R3,	L1,	L2,	L3,	C1,	C2,	C3,
варианта	В	Ом	Ом	Ом	мΓн	мГн	мГн	мкФ	мкФ	мкФ
1	660	10	20	15	15	25	15	200	205	239
2	380	11	21	16	16	27	19	210	215	276
3	220	12	22	19	17	29	24	220	225	243
4	110	13	23	20	18	31	28	230	235	228
5	660	14	24	22	19	33	34	240	245	219
6	380	15	25	23	20	35	37	250	255	277
7	220	16	26	28	21	37	23	260	265	293
8	ПО	17	27	29	22	28	24	270	275	227
9	660	18	28	30	23	27	32	280	285	251
10	380	19	29	10	24	25	30	290	295	284

Контрольное задание 4. (Трансформаторы)

Задание 1. Для трехфазного трансформатора, параметры которого приведены в таблице 4.1, определить: коэффициент мощности холостого хода, сопротивление первичной и вторичной обмоток трансформатора R_1 , $X_{\sigma 1}$, R_2 и $X_{\sigma 2}$; расчетные сопротивления Z_0 , R_0 и X_0 , угол магнитных потерь δ . Построить векторную диаграмму трансформатора при нагрузке, что составляет 0,8 от номинальной мощности трансформатора S_{HOM} и соѕ $\phi_2 = 0,75$. Построить внешнюю характеристику $U_2 = f_1(\beta)$ и зависимость $\eta = f_2(\beta)$ коэффициента полезного действия от нагрузки; для соѕ $\phi_2 = 0,75$. Разработать T - образную схему замещения трансформатора.

Таблица 4.2

Номер	Группа	S_{HOM}	$U_{1 \text{ HOM}}$	U_{20}	U_k	P_k	P_0	I_0
варианта	соединений	кВ∙А	В	В	%	Вт	Вт	%
1	Y/Y0 - 0	10	6300	400	5.0	335	105	10.0
2	Y/A - 1	20	6300	230	5,0	600	180	9,0
3	Y/Y0 - 0	30	10000	400	5,0	850	300	9,0
4	Y/Y0-0	50	10000	400	5,0	1325	440	8,0
5	Y/Y0 - 0	75	10000	230	5,0	1875	590	7,5
6	Y/Y0-0	100	10000	525	5.0	2400	730	7.5
7	Ү/Д - 11	180	10000	525	5,0	4100	1200	7,0
8	Y/Y0-0	240	10000	525	5,0	5100	1600	7,0
9	Ү/Д - 11	320	35000	10500	6,5	6200	2300	7,5
10	Y/Y0-0	420	10000	525	5,5	7000	2100	6,6

Контрольное задание 5 (Электрические машины переменного тока)

Задание 1. Трехфазный асинхронный двигатель с короткозамкнутым ротором подключен к трехфазной сети с напряжением, равным номинальному напряжению двигателя. Момент сопротивления на валу двигателя равен номинальному крутящему моменту двигателя. Определить:

- 1) потребляемую мощность;
- 2) номинальный, пусковой и максимальный (критический) вращательные моменты;
 - 3) номинальный и пусковой токи;
 - 4) номинальное и критическое скольжение;
- 5) минимально допустимое напряжение на зажимах двигателя, при котором возможен пуск двигателя с нагрузкой 80% от номинального значения;
 - 6) построить механические характеристики M=f(s) и n=f(M). Данные для расчета приведены в таблице 5.1.

Таблица 5.1

Номер	U _{HOM}	P _{HOM}	S _{HOM}	η_{HOM}	cosφ _{ном}	р	λ	V _{пуск} /	I _{nyck} /
варианта	В	кВт	%	%		-		V_{HOM}	I _{HOM}
1	220	0.8	3	78	0.85	1	2.2	1.9	7
2	380	1.0	2.5	80	0.86	1	2.0	1.7	7
3	220	1.5	4	83	0.87	1	2.2	1.8	7
4	380	2.2	5	85	0.88	1	2.0	1.5	7
5	220	5.5	3.5	88	0.89	1	2.2	1.2	6
6	380	7.5	3	90	0.90	2	2.0	1.1	6
7	220	11	5.5	91	0.92	2	2.2	1.0	6
8	380	22	2.5	92	0.91	2	2.0	1.4	5
9	220	40	3.5	86	0.89	2	2.2	1.3	5
10	380	75	3	79	0.90	2	2.0	1.6	5

Задание 2. Трехфазный асинхронный двигатель с фазным ротором, обмотка статора которого соединена треугольником, подключенный к трехфазной сети с частотой 50 Гц и напряжением Uл = 220 В. Определить:

- 1) пусковые токи статора и ротора, пусковой вращающий момент, коэффициент мощности при пуске двигателя с замкнутым на коротко ротором;
- 2) токи ротора и статора и крутящий момент при работе двигателя с номинальным скольжением $S_{\rm H}$, критическое скольжение и критический (максимальный) момент;
- 3) величину сопротивления фазы пускового реостата для получения пускового момента, равного максимальному, а также пусковые токи статора и ротора при этом сопротивлении и коэффициент мощности при пуске двигателя с реостатом.

Построить естественную механическую характеристику двигателя.

Данные для расчета приведены в таблице 5.2

Таблица 5.3

Номер	U_{hom}		S_{HOM}	R_1	R_2	X_1	X_2	VV 7	W
варианта	В	p	%	Ом	Ом	Ом	Ом	\mathbf{W}_1	\mathbf{W}_2
1	220	2	3	0.45	0.07	1.52	0.22	190	65
2	380	2	2.5	0.58	0.06	2.30	0.35	260	84
3	220	3	4	0.62	0.04	1.85	0.44	360	70
4	380	3	5	0.36	0.06	3.2	0.38	216	50
5	220	2	3.5	0.42	0.05	3.6	0.46	184	42
6	380	2	3	0.64	0.03	2.8	0.34	412	82
7	220	3	5.5	0.7	0.05	3.55	0.48	240	40
8	380	3	2.5	0.82	0.06	4.2	0.62	220	42
9	220	2	3.5	0.50	0.07	2.24	0.32	274	80
10	380	2	3	0.62	0.04	3.48	0.45	450	92

Контрольное задание 6 (Электрические машины постоянного тока)

Задание 1. Для генератора с параллельным возбуждением, работающего в номинальном режиме, определить момент на валу первичного двигателя. Данные для расчета приведены в таблице 6.1.

Таблица 6.1

Номер	U _{HOM}	Рном	n _{hom}	Rя	R _B	$\Delta P_{\text{mex}} + \Delta P_{\text{m}}$
варианта	В	кВт	об/мин	Ом	Ом	%
1	220	4.7	2860	0.85	147	4
2	220	5.2	2400	0.75	135	3.9
3	220	2.5	1500	0.60	154	4.2
4	220	10	2300	0.82	160	5
5	220	5.3	2860	0.68	166	5.1
6	230	7.5	1453	0.72	145	3.8
7	230	11	2100	0.75	158	4.4
8	230	4.0	2250	0.71	139	4.1
9	230	2.2	2400	0.65	142	4.6
10	230	2.5	2500	0.80	157	4.44

Задание 2. Для двигателя с параллельным возбуждением определить номинальную мощность двигателя, номинальный КПД, номинальный вращательный момент, пусковой ток при пуске двигателя без пускового реостата, сопротивление пускового реостата при условии $I_{\text{пуск}}/I_{\text{ном}}=22$ пусковой момент при пуске двигателя с реостатом. Построить естественную и искусственную механические характеристики. Данные для расчета приведены в таблице 6.2.

Таблица 6.2

Номер	$U_{\scriptscriptstyle { m HOM}}$	I_{HOM}	n_{HOM}	$R_{\scriptscriptstyle \mathrm{M}}$	$R_{\scriptscriptstyle B}$	I_0
задания	В	A	об/мин	Ом	Ом	A
1	220	10	2860	0.85	247	2
2	220	20.5	2400	0.75	235	1.9
3	230	16	1500	0.60	254	2 2
4	230	22	2300	0.82	260	1.5
5	110	9.4	2860	0.68	266	2.1
6	110	15.6	1453	0.72	245	2.7
7	110	19.8	2100	0.75	258	1.9
8	115	17	2250	0.71	239	2.1
9	115	16.3	2400	0.65	242	2.6
10	220	12.4	2500	0.80	257	2.44

Контрольное задание 7 (Основы электроники)

Задание 1. Для питания потребителя постоянного тока выбрать и рассчитать схему выпрямления. Действующее напряжение U, частота сети f, номинальное напряжение $U_{\text{ном}}$, сопротивление нагрузки $R_{\text{н}}$, коэффициент пульсации выпрямленного напряжения q приведены в таблице 7.1.

Таблица 7.1

Номер варианта	U, B	F, Гц	U _{ном} B	R _н Ом	q
1	220	50	20	10	0.67
2	210	50	30	100	0.67
3	240	50	40	25	0.67
4	250	50	15	5	0.67
5	220	50	25	16	0.67
6	210	50	10	120	0.67
7	230	50	6.5	95	0.67
8	260	50	5.5	34	0.67
9	280	50	12	29	0.67
10	200	50	9	42	0.67

Задание 2. Рассчитать диапазон изменения угла регулирования α трехфазного мостового управляемого выпрямителя, работающего на нагрузку с параметрами $L_{\rm H}$, $R_{\rm H}$, для регулирования напряжения в диапазоне $U_{\rm d~min}$ - $U_{\rm d~max}$ при питании от трехфазного симметричного источника с линейным напряжением $U_{\rm n}$. Построить регулировочную характеристику выпрямителя и зависимость коэффициента мощности от угла регулирования. Данные для расчета приведены в таблице 7.2.

Таблица 7.2

Номер варианта	U _{d min} B	U _{d max} B	$U_{\pi} B$	R _н Ом	L _н mГн
1	0	220	380	10	0
2	50	240	380	20	0
3	60	400	380	15	∞
4	120	350	380	25	∞
5	200	450	380	9.5	0
6	150	480	380	12	0
7	0	320	380	18	∞
8	25	380	380	21	∞
9	190	410	380	16	0
10	90	440	380	10.5	∞

Задание 3. Рассчитать схему мультивибратора на операционном усилителе с параметрами $U_{\text{вых max}}$, $I_{\text{вых доп}}$, частота импульсов f, коэффициент заполнения импульсов q. Данные для расчета приведены в таблице 7.3.

Таблица 7.3

Номер	U BAIX MAX B	Τ Δ	f, Гц	a
варианта	вых тах В	I _{вых доп} А	т, т ц	q
1	±12.5	0.1	1000	0.5
2	±12.0	0.05	10000	0.4
3	±12.2	0.1	10500	0.3
4	±10.0	0.2	12000	0.6
5	±11.5	0.3	11000	0.5
6	±11.5	0.15	15000	0.7
7	±10	0.8	20000	0.5
8	±13.5	0.4	22000	0.8
9	±11.5	0.45	30000	0.5
10	±12.5	0.7	40000	0.45

Задание 4. Рассчитать схему устройства вычисления, реализующую заданную в таблице 7.4 функцию.

Таблица 7.4

№ варіанта	функція
1	$u(t) = K_1 \cdot U_1 + K_2 \cdot U_2 + K_3 \int_0^t U_3 dt$
2	$u(t) = -K_1 \cdot U_1 - K_2 \cdot U_2 + K_3 \int_0^t U_3 dt$
3	$u(t) = -K_1 \cdot U_1 + K_2 \cdot \frac{dU_2}{dt} + K_3 \int_0^t U_3 dt$
4	$u(t) = -K_1 \cdot U_1 + K_2 \cdot U_2 - K_3 \int_0^t U_3 dt$
5	$u(t) = K_1 \cdot U_1 - K_2 \cdot U_2 - K_3 \int_0^t U_3 dt$
6	$u(t) = -K_1 \cdot \frac{dU_1}{dt} + K_2 \cdot U_2 + K_3 U_3$
7	$u(t) = K_1 \cdot \frac{dU_1}{dt} + K_2 \cdot U_2 + K_3 U_3$
8	$u(t) = -K_1 \cdot \frac{dU_1}{dt} + K_2 \cdot U_2 + K_3 \int_0^t U_3 dt$
9	$u(t) = -K_1 \cdot \frac{dU_1}{dt} - K_2 \cdot U_2 + K_3 \int_0^t U_3 dt$
10	$u(t) = -K_1 \cdot \frac{dU_1}{dt} + K_2 \cdot U_2 - K_3 \int_1^t U_3 dt$